New wristband measures sweat to monitor health risks

first_img Email Sign up for our daily newsletter Get more great content like this delivered right to you! Country Click to view the privacy policy. Required fields are indicated by an asterisk (*) Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwecenter_img Most fitness trackers—even the most sophisticated ones on the market—can’t do much more than count your steps or measure your heart rate. But researchers have developed a device that can do much more: Built into a headband or wristband, it can monitor chemicals in the body’s sweat that may be used to non-invasively assess medical conditions, discern drug abuse, or help coaches and trainers optimize the performance of elite athletes, scientists say.Wearable electronics might be all the rage among the health-conscious, but the functions of these devices—many of them worn on the wrist like a watch—are often limited to calculating calorie burn on the basis of heart rate or distance traveled. But there’s a wealth of information to be garnered from something that every active person does: sweat. Human sweat is full of substances that betray what’s going on inside, says Ali Javey, an electrical engineer at the University of California, Berkeley.Javey and his colleagues developed a prototype band that can tap into sweat’s bounty of information. The device has two main parts. One portion, made of flexible plastic, contains custom-built sensors that measure the concentrations of sodium and potassium ions (key electrolytes that make sweat salty) as well as glucose and lactate, which provide insights into the processes happening in a person’s cells. At high levels in cells, lactate—the negatively charged ion from lactic acid, which accumulates when cells lack sufficient oxygen—can disrupt a person’s pH balance. A temperature sensor helps calibrate the information gleaned by the other sensors, Javey says. The other portion of the device is a flexible circuit board that includes 11 off-the-shelf computer chips, which together interpret the information coming from the sensors and transmit it wirelessly to a nearby laptop or cell phone. The device creatively dodges two problems that have plagued previous attempts to tap into sweat: flexibility and computing power. In the past, engineers using silicon-based computer chips found that the inflexible components often don’t maintain contact with a person’s skin, Javey says. Other teams using pliable, plastic-based electronic devices found that those typically didn’t have the computing power required to measure more than one substance or include more than simple functions.No one else has measured multiple things simultaneously, says Jason Heikenfeld, an electrical engineer at the University of Cincinnati in Ohio, who was not involved in the project. “Every time you can measure something else, you get smarter.”The device functioned as predicted in lab tests on volunteers riding stationary bikes, the researchers report online today in Nature. Besides being portable and noninvasive (no needles required!), the prototype monitors chemicals in real time, eliminating the time and effort usually needed to collect samples and transport them for analysis to a lab with large, expensive equipment.“The ability to monitor sweat continuously offers new capabilities,” says John Rogers, a materials scientist at the University of Illinois at Urbana-Champaign. Besides basic studies of human physiology, including how people respond to exercise or other stress, the device could find use in a variety of clinical situations. Doctors could monitor everything from depression to drug use, customizing sensors to measure the breakdown products of drugs (either legal or illegal ones) and various biomarkers.Or, Javey says, the device could be used over a period of time to monitor how quickly or slowly individual patients respond to a drug during treatment, thus enabling a doctor to tailor its dosage. The device could also be used to alert athletes and patients to a variety of medical conditions, including fatigue, dehydration, and overheating.For now, the circuit-board portion of the team’s prototype is large. But the 11 computer chips that the researchers used could be consolidated on a single custom-designed chip, thus making future versions of the device smaller and available for use on babies and children as well as adults. Plus, next-generation versions could feature the ability to disconnect the sensors and dispose of them but keep and reuse the electronics.To commercialize the team’s device as a medical product would require lengthy clinical testing and assessments by the FDA—a process that could easily take years, says Javey. But versions to be used solely as a fitness monitor wouldn’t require such testing and evaluation.last_img

Leave a Reply

Your email address will not be published. Required fields are marked *